OSG Features to Support
Machine Learning

Mats Rynge @
OSG User Support

Open Science Grid

OSG All Hands Meeting 2020

Many OSG sites now provide access to GPUs

GPU software stacks are generally more
complex, both at system level and user level

Singularity integration

Singularity images

GPU Availability (varies over timel!)

125

100

75

GPU Count

50

25

Tesla V100 Quadro RTX GeForce TITAN Xp GeForce GeForce Tesla K40m Quadro GeForce
6000 RTX 2080 Ti GTX 1080 Ti GTX 1080 M4000 GTX 750 Ti

Count Resource GPU CUDAVersion CUDACapability

40 CMSHTPC_T3 US_NotreDame gpu Quadro RTX 6000 10.2 7.5
6 CMSHTPC_T3 US NotreDame_ gpu Tesla V100-PCIE-32GB 10.2 7.0
95 FNAL WILSON Tesla K40m 10.2 3.5
1 Omaha GeForce GTX 1060 6GB 10.2 6.1
5 Omaha Quadro RTX 5000 10.2 7.5
1 Omaha Quadro RTX 8000 10.2 7.5
3 Omaha Tesla K20m 10.2 3.5
1 Omaha Tesla K40m 10.2 3.5
3 Omaha Tesla P100-PCIE-16GB 10.2 6.0
2 Omaha Tesla V100-PCIE-16GB 10.2 7.0
14 Omaha Tesla V100-PCIE-32GB 10.2 7.0
12 0SG_US_NEWJERSEY ELSA GeForce GTX 1080 Ti 10.1 6.1
12 SDSC-PRP GeForce GTX 1080 11.0 6.1
4 SDSC-PRP GeForce GTX 1080 Ti 11.0 6.1
46 SDSC-PRP GeForce RTX 2080 Ti 11.0 7.5
77 SU-ITS GeForce GTX 750 Ti 11.0 5.0

The compute capability of a GPU determines its
general specifications and available features:
CUDACapability = 7.5 https://docs.nvidia.com/cuda/cuda-c-programming-gui

de/index.html#compute-capabilities
CUDAClockMhz = 1620.0

CUDAComputeUnits = 72
CUDADeviceName = "Quadro RTX 6000"

CUDADriverVersion = 10.2

CUDAECCEnabled = true _
request gpus = 1
CUDAGlobalMemoryMb = 22699 request_cpus = 1
request memory = 4 GB
CUDAOpenCLVersion = 1.2 -
requirements = HAS SINGULARITY == True && \
CUDACapability >= 3

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities

Table 14. Feature Support per Compute Capability

Feature Support

Compute Capability

(Unlisted features are supported for all compute capabilities)

3.5,3.7, 5.0,
5.2

5.3

6.X

7.X

8.0

Atomic functions operating on 32-bit integer values in global memory (Atomic
Functions)

Yes

Atomic functions operating on 32-bit integer values in shared memory (Awmic
Functions)

Yes

Atomic functions operating on 64-bit integer values in global memory (Atomic

Functions)

Yes

Atomic functions operating on 64-bit integer values in shared memory (Atomic
Functions)

Yes

Atomic addition operating on 32-bit floating point values in global and shared memory
(atomicAdd())

Yes

Atomic addition operating on 64-bit floating point values in global memory and shared

memory (atomicAdd())

Yes

Warp vote functions (Warp Vote Functions)

Memory fence functions (Memory Fence Functions)

Synchronization functions (Synchronization Functions)

Surface functions (Surface Functions)

Unified Memory Programming (Unified Memory Programming)

Dynamic Parallelism (CUDA Dynamic Parallelism)

Yes

Half-precision floating-point operations: addition, subtraction, multiplication,
comparison, warp shuffle functions, conversion

No

Yes

Tensor Cores

No

Yes

Mixed Precision Warp-Matrix Functions (\Warp matrix functions)

No

Yes

Hardware-accelerated async-copy (Asynchronously Copy Data from Global to Shared
Memory)

No

Yes

Hardware-accelerated Split Arrive/Wait Barrier (Split Arrive/\Wait Barrier)

No

Yes

L2 Cache Residency Management (Device Memory L2 Access Management)

No

Yes

Singularity documentation: Commands that run, or otherwise execute containers (shell, exec) can take an
--nv option, which will setup the container's environment to use an NVIDIA GPU and the basic CUDA libraries
to run a CUDA enabled application. The --nv flag will:

e Ensure that the /dev/nvidiaX device entries are available inside the container, so that the GPU cards in
the host are accessible.

e | ocate and bind the basic CUDA libraries from the host into the container, so that they are available to
the container, and match the kernel GPU driver on the host.

e Setthe LD_LIBRARY_PATH inside the container so that the bound-in version of the CUDA libraries are
used by applications run inside the container.

What this means for the OSG user: when the job starts up inside the Singularity container, the
environment is fully set up, with a configured LD_LIBRARY_PATH containing the host libraries

OSG open pool maintains a set of Singularity base images, which you may
either use directly or derive your own image from:

/cvmfs/singularity.opensciencegrid.org/opensciencegrid/

osgvo-el7-cuda10:10.1
osgvo-el7-cuda10:10.2
esgve—et/cudatotatest
tensorflow-gpu:2.2-cuda-10.1

tensorflow-gpu:2.3-cuda-10.1

tensorfteow—gputatest

See documentation for a list and links to
container definitions:
https://support.opensciencearid.org/
support/solutions/articles/12000073
449-available-containers-Llist

https://support.opensciencegrid.org/support/solutions/articles/12000073449-available-containers-list
https://support.opensciencegrid.org/support/solutions/articles/12000073449-available-containers-list
https://support.opensciencegrid.org/support/solutions/articles/12000073449-available-containers-list

1. GPUs are now widely available in the OSG open pool
2. Match jobs against attributes/capabilities, not specific models
3. Use provided Singularity images to get started

Documentation:

https://support.openscienceqrid.org/support/solutions/articles/5000653025-dpu-jobs

Available Containers:

https://support.opensciencegrid.org/support/solutions/articles/12000073449-available-containers-Llist

Questions?
support@osaconnect.net

https://support.opensciencegrid.org/support/solutions/articles/5000653025-gpu-jobs
https://support.opensciencegrid.org/support/solutions/articles/12000073449-available-containers-list
mailto:support@osgconnect.net

